
Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

Steganographic Implementation in osu! osz Beatmap Files for Data Concealment

Jazmy Izzati Alamsyah - 18221124

Program Studi Sistem dan Teknologi Informasi

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: 18221124@std.stei.itb.ac.id

Abstract— Abstract— Steganographic implementation

in osu! OSZ beatmap files for covert data transmission through

gaming networks is investigated. Four techniques were tested:

ZIP archive manipulation, audio LSB modification, image LSB

embedding, and configuration file comment injection across local

testing, peer-to-peer distribution, and official submission

scenarios. Audio LSB steganography emerged as the superior

method, achieving 100% success across all scenarios while

embedding multi-megabyte files without quality degradation.

ZIP, image, and configuration methods failed official submission

due to server-side processing including OSZ reconstruction,

image optimization, and comment sanitization. Results establish

gaming file formats as viable steganographic carriers, with audio

LSB demonstrating exceptional capacity, reliability, and

resistance to automated detection systems, providing foundation

for gaming-based covert communication research.

Keywords— steganography, data concealment, gaming files, OSZ

beatmap, audio LSB, rhythm games, covert communication,

multimedia steganography

I. INTRODUCTION

The exponential growth of digital gaming communities over

the past decade has fundamentally transformed how

multimedia content is shared and distributed across global

networks. Online gaming platforms now facilitate the

exchange of millions of user-generated files daily, creating

vast ecosystems of digital content that remain largely

unmonitored for covert communication activities. Among

these platforms, rhythm games have emerged as particularly

significant due to their reliance on complex multimedia

beatmap files that combine audio, visual, and timing data into

comprehensive interactive gaming experiences.

A beatmap, in the context of rhythm games, is a user-created

level or map that synchronizes gameplay elements with a

specific audio track. These files contain precise timing

information that dictates when and where players must interact

with the game interface, creating a choreographed experience

that matches the rhythm and structure of the underlying music.

Beatmaps typically include the complete audio file,

background artwork, hit circle positions, slider paths, timing

points, difficulty settings, and metadata about the song and

creator. This multimedia integration makes beatmaps

substantially larger and more complex than traditional game

files, often ranging from 5 to 50 megabytes per file depending

on audio quality and visual assets.

osu!, one of the world's most popular free-to-play rhythm

games, has cultivated a vibrant community of over 20 million

registered users who actively create, share, and download

beatmap files. The game's ecosystem revolves around user-

generated content, with thousands of new beatmaps uploaded

daily to official repositories and community platforms. These

beatmaps are distributed in the OSZ (osu! beatmap) format,

which serves as a container for all necessary game assets. The

OSZ format encapsulates complete gaming experiences within

single compressed archives, making them potential candidates

for steganographic applications due to their legitimate large

file sizes, frequent distribution patterns, and complex internal

structures.

The osu! community has established a sophisticated

infrastructure for beatmap sharing that spans official databases,

mirror sites, and peer-to-peer networks. This distributed

ecosystem processes up to millions of downloads monthly,

creating natural cover traffic that could theoretically mask

covert communication channels. Unlike traditional file sharing

platforms where large or unusual files might raise suspicion,

the gaming environment normalizes the transfer of substantial

multimedia archives, potentially providing an operational

environment suitable for steganographic applications.

The technical complexity of beatmap files presents multiple

theoretical vectors for data concealment that have not been

explored in academic literature. OSZ files are fundamentally

ZIP archives with custom extensions, potentially offering

opportunities for header manipulation, directory structure

modification, and compressed data stream injection. The

multimedia content within these archives may provide

additional hiding locations through established techniques

such as least significant bit modification in audio data, spatial

domain manipulation in background images, and metadata

field injection in configuration files. Furthermore, the gaming-

specific timing data and difficulty parameters present novel

concealment possibilities unique to rhythm game formats.

Current steganographic research has primarily focused on

conventional multimedia formats such as JPEG images, MP3

audio files, and AVI videos. While these formats have proven

effective for academic demonstrations, they face increasing

challenges from sophisticated detection systems that employ

statistical analysis, machine learning algorithms, and structural

examination techniques. Gaming file formats, particularly

mailto:18221124@std.stei.itb.ac.id

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

beatmaps, operate within a fundamentally different context

where complex structures, varied compression patterns, and

multimedia integration are expected characteristics rather than

suspicious anomalies.

This research investigates the feasibility of steganographic

implementation in osu! OSZ beatmap files, addressing a

significant gap in current literature regarding gaming file

formats. The study aims to determine whether practical data

concealment techniques can be successfully implemented

within gaming archives while maintaining compatibility with

existing gaming infrastructure and preserving file functionality.

Through experimental implementation and testing, this work

seeks to evaluate the viability of beatmap files as

steganographic carriers and assess their potential effectiveness

compared to conventional hiding methods.

II. METHODOLOGY

The experimental framework for this research involves

implementing and evaluating steganographic techniques

specifically designed for osu! OSZ beatmap files. The

methodology encompasses three primary phases: OSZ file

structure analysis, steganographic algorithm implementation,

and resistance evaluation against common file operations.

A. OSZ File Structure Analysis

The first stage involves comprehensive analysis of OSZ file
architecture to identify potential hiding locations. OSZ files are
fundamentally ZIP archives containing multiple components:
audio files that include hitsounds and the main song (typically
.mp3, .ogg, and .wav formats), background images (.jpg or
.png), beatmap configuration files (.osu), an optional
storyboard file (.osb), and metadata. Each component presents
different opportunities for data concealment that must be
systematically evaluated.

OSZ files utilize the MIME type x-osu-beatmap-archive
and serve as complete beatmap packages within the osu!
ecosystem. The format specification follows standard ZIP
archive structure while maintaining specific organizational
patterns required for game functionality.

Fig. 1. OSZ File Structure

The internal structure follows as illustrated in Fig. 1: audio
files (.mp3/.ogg/.wav) serve as the primary content,
background images (.jpg/.png) provide visual elements for the
background image, beatmap configuration files (.osu) contain
timing and gameplay data, and optional components include

custom hitsounds, storyboard files (.osb), and skin elements.
This standardized organization creates multiple vectors for
steganographic implementation while maintaining
compatibility with osu! client expectations.

B. ZIP Archive Structure and Steganography Analysis

The underlying ZIP format provides several hiding

opportunities within its technical specification as demonstrated

in Fig. 2. ZIP archives contain local file headers (signature

0x04034b50), central directory headers (signature

0x02014b50), and end of central directory records (signature

0x06054b50). Each component offers potential concealment

locations including extra field sections, comment fields, and

gap spaces between file sections.

Fig. 2. ZIP File Structure

The ZIP central directory structure contains fields including

ZIPSignature, FileNameStringLength, ExtraDataLength,

FileCommentLength, and RelativeOffsetOfLocalHeader. Since

the checksum check only ensures integrity of the compressed

data, but not the header we can easily modify any member of

the central directory entry structure. The first steganographic

technique involves filename manipulation where by changing

the first character of the name (the byte 0x6D which is the

letter 'm') to 0x00, we effectively hide this file from being

listed by almost all programs that work with the ZIP file

format.

This technique exploits the fact that ZIP stores file names at

two locations, once at the central directory entry and once at

the local directory entry - and since only one of the two is

modified, the other one can be used to revert the file to original

state. The extra data fields described in the PKWARE ZIP file

format specification were introduced because of the need to

store extra information about the file such as NTFS data

streams, encryption information and other data utilized by

applications that process this format. For data hiding, you need

only expand the extra field of one file to consume one or more

of the files that follow it in the archive header.

The most sophisticated technique involves manipulation of the

End of Central Directory (EOCD) record structure. To hide

files, you simply change the LocationOfCentralDir pointer to

point to the first file you want to be visible in the archive. This

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

procedure hides all files located prior to the file to which the

modified LocationOfCentralDir points. The internal data

structure of ZIP archives is similar to that the structure the file

system uses to store data on drives. Files form an array of local

directory entry structures followed by compressed data

assigned to that local directory entry. Since the central

directory entry end structure contains the pointer to the first

central directory entry, it can be moved in any direction. By

moving it up in a file we create space for data to be injected, as

shown in Fig. 3.

Fig. 3. Injected ZIP

One side effect of injecting data this way is that once new files

are added to such an archive with an archiver application,

injected data is automatically stripped during the unarchiving

process. This creates natural protection mechanisms where

hidden data will be stripped by the antivirus itself, if the file is

scanned for malware, which is useful if the file ends up in the

wrong hands, because the hidden data will self destruct.

C. Hiding Data in other Files

Beyond ZIP archive structure manipulation, OSZ files contain

multiple multimedia components that provide additional

steganographic opportunities. Each file type within the archive

offers unique hiding locations that can be exploited to create

comprehensive data concealment systems.

1) Audio File Steganography

Audio files within OSZ archives provide substantial

opportunities for data concealment through LSB (Least

Significant Bit) steganography techniques. In digital audio

representation, each sample is stored as a multi-bit value

where the LSB carries minimal significance in the overall

sound quality. Modifying the LSB changes the amplitude by

only one unit out of the total range, creating variations

imperceptible to human hearing.

For WAV files commonly found in beatmaps, the

implementation directly manipulates uncompressed audio

samples. A typical 16-bit WAV file can theoretically hide one

bit of data per audio sample, providing substantial capacity -

for example, a 256×256 pixel grayscale image can hide 8KB

of data, while audio files with thousands of samples per

second offer even greater capacity. The steganographic

process involves reading the audio samples, extracting the

LSB from each sample, replacing it with secret data bits, and

reconstructing the audio file.

For compressed formats like MP3 and OGG, the approach

operates on the raw compressed byte stream rather than

decoded audio samples. This method bypasses potential

quality degradation from decompression-recompression cycles

while maintaining format compatibility. To increase hiding

capacity, multiple LSBs can be utilized (2-bit, 3-bit LSB),

though this creates a trade-off where larger capacity results in

decreased audio quality.

2) Image Steganography in Background Files

Background images in OSZ files leverage LSB steganography

in the spatial domain, directly modifying pixel intensity values.

For 24-bit color images, each pixel contains RGB components

(Red-Green-Blue), with each component represented by 8 bits.

The steganographic process typically targets the blue channel

since human visual perception is least sensitive to blue color

variations.

The fundamental principle relies on the fact that modifying the

LSB changes pixel values by only ±1 from their original

intensity, creating differences imperceptible to human vision.

For instance, changing a pixel value from 130 to 131

maintains virtually identical visual appearance while

embedding one bit of secret data.

The implementation requires format considerations for

optimal results. JPEG images pose challenges due to lossy

compression that can destroy embedded LSB data,

necessitating conversion to lossless formats like PNG for

reliable steganographic applications. Capacity calculations for

image steganography depend on resolution and color depth - a

256×256 pixel color image (24-bit) can accommodate

approximately 24KB of hidden data when utilizing one LSB

per color component.

The embedding process can follow sequential patterns where

data bits are embedded in consecutive pixels, or randomized

approaches using pseudo-random number generators (PRNG)

with seed-based keys for enhanced security. Additional

security layers can include pre-encryption of secret data using

XOR operations with randomly generated key bits before LSB

embedding.

3) Beatmap Configuration File Manipulation

The .osu configuration files support comment lines using the

'//' prefix, which are ignored by the game client during parsing.

Hidden data can be encoded and embedded within these

comment sections, appearing as documentation or

configuration notes. Since these files already contain various

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

technical comments explaining timing points and mapping

decisions, additional commented lines integrate seamlessly

with the existing file structure.

Each of these techniques leverages the natural characteristics

of their respective file formats. The distributed nature of

hiding locations across multiple file types within the same

archive creates a robust system that can accommodate varying

data sizes and requirements.

III. IMPLEMENTATION

This phase involves developing practical steganographic
tools and algorithms specifically designed for OSZ beatmap
files. This section details the technical approach and
experimental setup used to validate the proposed
steganographic techniques.

The implementation utilizes Python-based development
framework with specialized libraries for multimedia processing
and archive manipulation. Key components include zipfile
library for ZIP archive handling, wave and mutagen libraries
for audio processing, PIL for image manipulation, and custom
parsing modules for .osu configuration files.

A. Python Code Structure

The steganographic implementation follows a modular

architecture designed for flexibility and extensibility. The core

OSZSteganography class provides a unified interface for

embedding and extracting data across multiple hiding

locations within OSZ archives.

class OSZSteganography:

 def __init__(self):

 self.supported_audio = ['.mp3', '.ogg', '.wav']

 self.supported_images = ['.jpg', '.jpeg', '.png']

 def embed_data(self, osz_path, secret_data,
output_path=None, methods=['zip', 'audio', 'image',
'config'], audio_file=None)

 def extract_data(self, osz_path, methods=['zip',
'audio', 'image', 'config'])

The implementation employs a cascading approach where

multiple embedding methods are attempted sequentially until

one succeeds. This redundancy ensures data can be hidden

even when specific file types are unavailable or unsuitable for

the target data size. The system prioritizes methods based on

capacity and reliability: configuration comments for small data,

ZIP structure manipulation for medium payloads, and

multimedia LSB techniques for larger datasets.

B. ZIP Archive Steganography Implementation

The ZIP archive steganography implementation exploits the

structural characteristics of the ZIP format used by OSZ files.

The technique operates on multiple levels within the archive

structure, from simple comment field manipulation to

sophisticated central directory modifications.

The primary implementation approach utilizes the ZIP

comment field mechanism, which allows arbitrary data storage

within the archive structure without affecting file integrity or

functionality. The system encodes secret data using Base64

encoding to ensure compatibility with ZIP format

requirements and prevent binary data corruption during

archive operations.

def _embed_zip_header(self, temp_dir, data):

 """Embed data in ZIP header using comment field"""

 comment_file = os.path.join(temp_dir, '.stego_comment')

 encoded_data = base64.b64encode(data).decode('ascii')

 with open(comment_file, 'w') as f:

 f.write(encoded_data)

The embedding process creates a hidden marker file within the

archive structure that contains the Base64-encoded payload.

This approach leverages the fact that most ZIP processing

tools ignore files with specific naming patterns, particularly

those beginning with dots or containing steganographic

markers. The hidden file integrates seamlessly with the OSZ

structure since beatmap archives commonly contain various

metadata and configuration files.

For extraction, the system performs reverse operations by

locating the marker file and decoding the embedded payload:

def _extract_zip_header(self, osz_path):

 """Extract data from ZIP header"""

 with tempfile.TemporaryDirectory() as temp_dir:

 self._extract_osz(osz_path, temp_dir)

 comment_file = os.path.join(temp_dir,
'.stego_comment')

 if os.path.exists(comment_file):

 with open(comment_file, 'r') as f:

 encoded_data = f.read()

 return base64.b64decode(encoded_data)

 return None

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

The ZIP steganography method provides moderate capacity

limited primarily by Base64 encoding overhead, which

increases data. However, this technique offers excellent

compatibility with existing osu! infrastructure and maintains

archive functionality across different platforms and ZIP

processing tools.

C. Audio LSB Steganography Implementation

The audio steganography implementation targets the

multimedia components within OSZ archives, specifically

exploiting the least significant bit (LSB) substitution technique

across multiple audio formats. The system supports WAV,

MP3, and OGG files, each requiring specialized handling due

to format-specific characteristics and compression algorithms.

The implementation employs a sophisticated capacity analysis

system that evaluates available audio files and selects optimal

candidates based on file size, format characteristics, and

estimated hiding capacity:

def _embed_audio_lsb(self, temp_dir, data,
target_audio=None):

 """Embed data in audio files using LSB"""

 audio_files = self._find_files_by_extension(temp_dir,
self.supported_audio)

 if target_audio:

 selected_file =
self._locate_target_audio(audio_files, target_audio)

 else:

 selected_file = max(audio_files, key=lambda f:
os.path.getsize(f))

 if selected_file.lower().endswith('.wav'):

 return self._embed_wav_lsb(selected_file, data)

 elif selected_file.lower().endswith(('.mp3', '.ogg')):

 return
self._embed_compressed_audio_lsb(selected_file, data)

For WAV files, the implementation directly manipulates

uncompressed audio samples using precise bit manipulation.

The system reads the WAV file structure, extracts audio

sample data, and systematically replaces the least significant

bits with hidden data bits. A length header is prepended to the

payload to enable accurate extraction:

def _embed_wav_lsb(self, wav_file, data):

 """Embed data in WAV file using LSB"""

 with wave.open(wav_file, 'rb') as wav:

 frames = wav.readframes(wav.getnframes())

 params = wav.getparams()

 # Convert to sample array based on bit depth

 if params.sampwidth == 2:

 audio_data = list(struct.unpack('<' + 'h' *
(len(frames) // 2), frames))

 # Embed length header followed by payload

 data_with_length = struct.pack('<I', len(data)) + data

 # Systematic LSB replacement

 bit_index = 0

 for byte in data_with_length:

 for bit in range(8):

 bit_value = (byte >> bit) & 1

 audio_data[bit_index] = (audio_data[bit_index]
& 0xFFFE) | bit_value

 bit_index += 1

For compressed audio formats (MP3/OGG), the

implementation operates on the raw byte stream rather than

decoded audio samples. This approach bypasses compression

artifacts while maintaining format compatibility. The system

skips format headers to avoid corruption and embeds data in

the compressed audio payload:

def _embed_compressed_audio_lsb(self, audio_file, data):

 """Embed data in MP3/OGG files using LSB on raw
bytes"""

 with open(audio_file, 'rb') as f:

 audio_bytes = bytearray(f.read())

 # Skip format headers to preserve compatibility

 header_skip = 1024

 data_with_length = struct.pack('<I', len(data)) + data

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

 # Embed in raw byte LSBs

 bit_index = 0

 for byte_val in data_with_length:

 for bit_pos in range(8):

 bit_value = (byte_val >> bit_pos) & 1

 audio_bytes[header_skip + bit_index] =
(audio_bytes[header_skip + bit_index] & 0xFE) | bit_value

 bit_index += 1

The audio steganography method provides substantial hiding

capacity, particularly for high-quality audio files common in

rhythm game beatmaps. WAV files offer the highest reliability

due to their uncompressed nature, while compressed formats

provide larger capacity but may exhibit minor quality

degradation in extreme cases. The implementation includes

comprehensive error handling and capacity validation to

ensure successful embedding across various audio

configurations.

D. Image LSB Steganography Implementation

The image steganography implementation addresses format

compatibility challenges inherent in beatmap background

images. Since OSZ archives commonly contain JPEG

background images that utilize lossy compression, the system

implements automatic format conversion to ensure LSB data

preservation.

The implementation begins with format detection and

preprocessing to handle compression incompatibilities:

def _embed_image_lsb(self, temp_dir, data):

 image_files = self._find_files_by_extension(temp_dir,
self.supported_images)

 if image_file.lower().endswith(('.jpg', '.jpeg')):

 print("WARNING: JPEG format detected!")

 print("JPEG compression will destroy LSB data.
Converting to PNG...")

 png_file = image_file.rsplit('.', 1)[0] + '.png'

 img = Image.open(image_file)

 img.save(png_file, 'PNG')

 os.remove(image_file)

 image_file = png_file

This preprocessing step prevents compression artifacts from

destroying embedded data while maintaining visual fidelity of

the background image within the gaming environment. The

system specifically targets the blue color channel for data

embedding, leveraging human visual perception

characteristics where blue channel modifications are least

detectable.

The embedding process employs systematic bit manipulation

across pixel data with integrated capacity validation:

img = Image.open(image_file).convert('RGB')

pixels = list(img.getdata())

data_with_length = struct.pack('<I', len(data)) + data

Capacity validation

if len(data_with_length) * 8 > len(pixels):

 print(f"Not enough capacity. Need
{len(data_with_length) * 8}, have {len(pixels)}")

 return False

LSB embedding in blue channel

for pixel_idx, pixel in enumerate(pixels):

 r, g, b = pixel

 if bit_index < len(data_with_length) * 8:

 byte_index = bit_index // 8

 bit_position = bit_index % 8

 bit_value = (data_with_length[byte_index] >>
bit_position) & 1

 b = (b & 0xFE) | bit_value

 modified_pixels.append((r, g, b))

The implementation incorporates immediate verification

mechanisms to ensure embedding success. After modification,

the system performs extraction validation on the modified

image to confirm data integrity before finalizing the process.

This verification step detects potential embedding failures

early and prevents corrupted steganographic containers from

being created.

E. Configuration File Comment Injection

The configuration file steganography exploits the comment

structure within .osu beatmap files, which contain timing data,

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

difficulty parameters, and mapping metadata. These files

support C-style comments using the '//' prefix, creating natural

hiding locations that integrate seamlessly with existing

documentation patterns.

The implementation utilizes Base64 encoding to ensure

comment compatibility and implements a chunked storage

approach for reliability:

def _embed_config_comments(self, temp_dir, data):

 osu_files = self._find_files_by_extension(temp_dir,
['.osu'])

 osu_file = osu_files[0]

 encoded_data = base64.b64encode(data).decode('ascii')

 chunk_size = 60 # Smaller chunks for reliability

 chunks = [encoded_data[i:i+chunk_size] for i in range(0,
len(encoded_data), chunk_size)]

 comment_lines = []

 comment_lines.append("// STEGO_START\n")

 for i, chunk in enumerate(chunks):

 comment_lines.append(f"// STEGO_DATA_{i:03d}:
{chunk}\n")

 comment_lines.append("// STEGO_END\n")

The system employs structured markers and indexed data

chunks to enable reliable reconstruction during extraction. The

chunked approach prevents line length limitations and parsing

errors while maintaining comment format compliance. Data

chunks are sequentially numbered and encapsulated between

clear start and end markers.

For extraction, the implementation performs systematic

parsing to locate steganographic markers and reconstruct the

original payload:

def _extract_config_comments(self, temp_dir):

 stego_lines = {}

 in_stego_section = False

 for line in lines:

 line = line.strip()

 if line == '// STEGO_START':

 in_stego_section = True

 elif line == '// STEGO_END':

 in_stego_section = False

 break

 elif in_stego_section and line.startswith('//
STEGO_DATA_'):

 parts = line.split(': ', 1)

 if len(parts) == 2:

 index = int(parts[0].split('_')[-1])

 stego_lines[index] = parts[1]

 # Reassemble data in correct order

 encoded_data = ''.join(stego_lines[i] for i in
sorted(stego_lines.keys()))

 return base64.b64decode(encoded_data)

This method provides excellent stealth characteristics since

additional comments in beatmap files appear as standard

documentation or developer notes. The technique offers

moderate capacity limited primarily by reasonable comment

lengths and maintains full compatibility with osu! client

parsing requirements.

F. Uploading Beatmap with Hidden Files

The final phase involves integrating steganographic beatmaps

into the official osu! distribution ecosystem through the

standard beatmap submission process. This phase requires

manual interaction with the osu! client editor and submission

system, as the steganographic implementation operates

independently of the game's built-in upload mechanisms.

The upload process begins within the osu! editor environment,

where the modified beatmap folder containing steganographic

content must be properly configured for submission. The

editor automatically scans the beatmap directory structure,

reading all component files including the modified audio,

image, and configuration files that contain embedded data.

The system validates file integrity, timing accuracy, and

gameplay functionality before enabling submission options.

Once successfully submitted, the beatmap becomes available

through the official osu! repository where it integrates with the

standard download and distribution infrastructure. The

steganographic content becomes accessible to authorized

recipients who possess appropriate extraction tools and

knowledge of the embedded data locations. This distribution

method leverages the legitimate high-volume traffic of the

gaming platform to provide natural cover for covert

communication channels.

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

IV. EXPERIMENTS AND RESULTS

This section presents comprehensive testing results for the

steganographic implementation across multiple hiding

methods within OSZ beatmap files. Each technique was

evaluated under various distribution scenarios to assess

practical viability, operational constraints, and resistance to

automated processing systems. The experimental framework

encompasses local testing, peer-to-peer distribution, official

submission pipelines, game functionality verification, and data

integrity analysis.

The testing protocol employed a systematic approach to

evaluate each steganographic method across multiple

deployment scenarios. Test data included both text messages

and binary files of varying sizes to assess capacity limitations

and format compatibility. Each method was subjected to three

distribution pathways: local extraction verification, direct

peer-to-peer file transfer, and official osu! submission through

the beatmap ranking system. Game functionality testing

verified that steganographic modifications did not compromise

beatmap playability or introduce detectable artifacts.

A. Comprehensive Steganographic Testing Results

Meth

od

Data

Type

Local

Testing

Peer-to-Peer

Distribution

Official osu!

Submission
Data Integrity

Game

Function

OSZ
Text

Data
Successful Successful Failed Perfect Playable

 File

Data
Successful Successful Failed Perfect Playable

Image

LSB

Text

Data
Successful Successful Failed Perfect

Playable,

Missing Image

 File

Data
Successful Successful Failed Perfect

Playable,

Missing

Background

Audio

LSB

Text

Data
Successful Successful Successful Perfect Perfect

 File

Data
Successful Successful Successful Perfect Perfect

Confi

gurati

on

Text

Only
Successful Successful Failed Perfect Perfect

B. Visual Evidence of Testing Results

The following figures demonstrate the practical outcomes of

steganographic testing across different data types and

distribution methods.

Fig. 4. Text Data Steganography Results Comparison Left: Original, Right

Extracted

Fig. 5. File Data Steganography Results Comparison Left: Original, Right

Extracted

C. Detailed Analysis

1) ZIP Archive Steganography Performance

ZIP archive steganography demonstrated excellent

performance in controlled environments but failed completely

when subjected to official submission processing. The failure

mechanism appears to be server-side OSZ reconstruction,

where the osu! submission system extracts, validates, and

repackages beatmap contents, effectively stripping any hidden

metadata files or comment fields. This behavior suggests that

the osu! infrastructure implements security measures that

inadvertently defeat ZIP-based steganographic techniques.

2) Image LSB Steganography Analysis

Image steganography showed promising results in peer-to-

peer scenarios but encountered significant obstacles during

official submission. The primary failure mode stems from osu!

server-side image processing constraints, specifically the

2.5MB file size limit for background images and automatic

format optimization. The steganographic implementation

converts JPEG images to PNG format to prevent lossy

compression from destroying embedded data, but this

conversion often results in files exceeding server size limits.

Makalah II4021 Kriptografi, Semester II Tahun 2024/2025

As seen in Fig. 6, the format conversion process can cause

background images to be rejected, compromising the visual

integrity of the beatmap. This creates a trade-off between

steganographic capability and aesthetic preservation that limits

practical development scenarios.

Fig. 6. Before and After File Insertion

3) Audio LSB Steganography Superiority

Audio LSB steganography emerged as the most robust and

versatile method across all testing scenarios. This technique

successfully survived the complete official submission

pipeline while maintaining both data integrity and beatmap

functionality. The success appears attributable to several

factors: audio files undergo minimal server-side processing,

LSB modifications in audio samples are below human

auditory perception thresholds, and the osu! client treats

modified audio files as functionally equivalent to originals.

The method demonstrated exceptional capacity, successfully

embedding multi-megabyte files within typical beatmap audio

tracks without detectable quality degradation. The resistance

to automated detection systems and compatibility with official

distribution channels makes this approach particularly suitable

for operational deployment.

4) Configuration File Steganography Limitations

Configuration file steganography succeeded in direct

distribution scenarios but failed official submission due to

comment sanitization processes. The osu! submission system

appears to parse and reconstruct .osu configuration files,

removing or standardizing comment sections that contain

embedded data. While this method offers excellent stealth

characteristics for peer-to-peer distribution, its vulnerability to

automated processing limits operational utility.

D. Capacity and Performance Metrics

Capacity analysis reveals substantial differences between

methods. Audio steganography offers the highest payload

capacity due to the large size of typical beatmap audio files

and the availability of one LSB per audio sample. Image

steganography provides moderate capacity limited by

resolution and color depth, while configuration file methods

are restricted to text-only payloads. ZIP archive methods

theoretically offer unlimited capacity but are defeated by

processing pipeline constraints.

V. CONCLUSION

This research successfully addresses the identified gap in
steganographic literature regarding gaming file formats,
demonstrating that osu! OSZ beatmap files can serve as
effective steganographic carriers when appropriate techniques
are employed. Audio LSB steganography specifically emerges
as a robust solution that balances capacity, reliability, and
operational security requirements.

While the technique presents certain limitations and
vulnerabilities, its demonstrated success in bypassing server-
side processing constraints and maintaining compatibility with
official distribution channels establishes it as a viable method
for covert data transmission through gaming networks. The
research provides a foundation for further exploration of
gaming-based steganographic applications and highlights the
evolving landscape of digital covert communication channels.

The experimental validation confirms that gaming file formats
represent a significant and previously underexplored domain
for steganographic research, offering unique advantages over
conventional multimedia carriers while presenting novel
challenges that require specialized technical approaches.

REPOSITORY LINK AT GITHUB

https://github.com/Mipol2/osz-stego

REFERENCES

[1] ReversingLabs Corporation, "Hiding in the Familiar: Steganography and
Vulnerabilities in Popular Archives Formats," NyxEngine BlackHat EU-
10 Whitepaper, 2010. Available:
https://cdn2.hubspot.net/hubfs/3375217/Reversing_Labs_November%20
2018/File/NyxEngine_BlackHat-EU-10-Whitepaper.pdf

[2] R. Munir, “Steganografi,” 2024.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi-dan
Koding/2023-2024/05-Steganografi-2024.pdf

[3] osu! development team, "File formats," osu! wiki, 2025.
https://osu.ppy.sh/wiki/en/Client/File_formats

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 18 Juni 2025

Jazmy Izzati Alamsyah

18221124

https://github.com/Mipol2/osz-stego
https://cdn2.hubspot.net/hubfs/3375217/Reversing_Labs_November%202018/File/NyxEngine_BlackHat-EU-10-Whitepaper.pdf
https://cdn2.hubspot.net/hubfs/3375217/Reversing_Labs_November%202018/File/NyxEngine_BlackHat-EU-10-Whitepaper.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi-dan%20Koding/2023-2024/05-Steganografi-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Kriptografi-dan%20Koding/2023-2024/05-Steganografi-2024.pdf
https://osu.ppy.sh/wiki/en/Client/File_formats

