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Abstract— Abstract— Steganographic implementation 

in osu! OSZ beatmap files for covert data transmission through 

gaming networks is investigated. Four techniques were tested: 

ZIP archive manipulation, audio LSB modification, image LSB 

embedding, and configuration file comment injection across local 

testing, peer-to-peer distribution, and official submission 

scenarios. Audio LSB steganography emerged as the superior 

method, achieving 100% success across all scenarios while 

embedding multi-megabyte files without quality degradation. 

ZIP, image, and configuration methods failed official submission 

due to server-side processing including OSZ reconstruction, 

image optimization, and comment sanitization. Results establish 

gaming file formats as viable steganographic carriers, with audio 

LSB demonstrating exceptional capacity, reliability, and 

resistance to automated detection systems, providing foundation 

for gaming-based covert communication research. 

Keywords— steganography, data concealment, gaming files, OSZ 

beatmap, audio LSB, rhythm games, covert communication, 

multimedia steganography 

I.  INTRODUCTION 

The exponential growth of digital gaming communities over 

the past decade has fundamentally transformed how 

multimedia content is shared and distributed across global 

networks. Online gaming platforms now facilitate the 

exchange of millions of user-generated files daily, creating 

vast ecosystems of digital content that remain largely 

unmonitored for covert communication activities. Among 

these platforms, rhythm games have emerged as particularly 

significant due to their reliance on complex multimedia 

beatmap files that combine audio, visual, and timing data into 

comprehensive interactive gaming experiences. 

A beatmap, in the context of rhythm games, is a user-created 

level or map that synchronizes gameplay elements with a 

specific audio track. These files contain precise timing 

information that dictates when and where players must interact 

with the game interface, creating a choreographed experience 

that matches the rhythm and structure of the underlying music. 

Beatmaps typically include the complete audio file, 

background artwork, hit circle positions, slider paths, timing 

points, difficulty settings, and metadata about the song and 

creator. This multimedia integration makes beatmaps 

substantially larger and more complex than traditional game 

files, often ranging from 5 to 50 megabytes per file depending 

on audio quality and visual assets. 

osu!, one of the world's most popular free-to-play rhythm 

games, has cultivated a vibrant community of over 20 million 

registered users who actively create, share, and download 

beatmap files. The game's ecosystem revolves around user-

generated content, with thousands of new beatmaps uploaded 

daily to official repositories and community platforms. These 

beatmaps are distributed in the OSZ (osu! beatmap) format, 

which serves as a container for all necessary game assets. The 

OSZ format encapsulates complete gaming experiences within 

single compressed archives, making them potential candidates 

for steganographic applications due to their legitimate large 

file sizes, frequent distribution patterns, and complex internal 

structures. 

The osu! community has established a sophisticated 

infrastructure for beatmap sharing that spans official databases, 

mirror sites, and peer-to-peer networks. This distributed 

ecosystem processes up to millions of downloads monthly, 

creating natural cover traffic that could theoretically mask 

covert communication channels. Unlike traditional file sharing 

platforms where large or unusual files might raise suspicion, 

the gaming environment normalizes the transfer of substantial 

multimedia archives, potentially providing an operational 

environment suitable for steganographic applications. 

The technical complexity of beatmap files presents multiple 

theoretical vectors for data concealment that have not been 

explored in academic literature. OSZ files are fundamentally 

ZIP archives with custom extensions, potentially offering 

opportunities for header manipulation, directory structure 

modification, and compressed data stream injection. The 

multimedia content within these archives may provide 

additional hiding locations through established techniques 

such as least significant bit modification in audio data, spatial 

domain manipulation in background images, and metadata 

field injection in configuration files. Furthermore, the gaming-

specific timing data and difficulty parameters present novel 

concealment possibilities unique to rhythm game formats. 

Current steganographic research has primarily focused on 

conventional multimedia formats such as JPEG images, MP3 

audio files, and AVI videos. While these formats have proven 

effective for academic demonstrations, they face increasing 

challenges from sophisticated detection systems that employ 

statistical analysis, machine learning algorithms, and structural 

examination techniques. Gaming file formats, particularly 
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beatmaps, operate within a fundamentally different context 

where complex structures, varied compression patterns, and 

multimedia integration are expected characteristics rather than 

suspicious anomalies. 

This research investigates the feasibility of steganographic 

implementation in osu! OSZ beatmap files, addressing a 

significant gap in current literature regarding gaming file 

formats. The study aims to determine whether practical data 

concealment techniques can be successfully implemented 

within gaming archives while maintaining compatibility with 

existing gaming infrastructure and preserving file functionality. 

Through experimental implementation and testing, this work 

seeks to evaluate the viability of beatmap files as 

steganographic carriers and assess their potential effectiveness 

compared to conventional hiding methods. 

II. METHODOLOGY 

The experimental framework for this research involves 

implementing and evaluating steganographic techniques 

specifically designed for osu! OSZ beatmap files. The 

methodology encompasses three primary phases: OSZ file 

structure analysis, steganographic algorithm implementation, 

and resistance evaluation against common file operations.  

A. OSZ File Structure Analysis 

The first stage involves comprehensive analysis of OSZ file 
architecture to identify potential hiding locations. OSZ files are 
fundamentally ZIP archives containing multiple components: 
audio files that include hitsounds and the main song (typically 
.mp3, .ogg, and .wav formats), background images (.jpg or 
.png), beatmap configuration files (.osu), an optional 
storyboard file (.osb), and metadata. Each component presents 
different opportunities for data concealment that must be 
systematically evaluated. 

OSZ files utilize the MIME type x-osu-beatmap-archive 
and serve as complete beatmap packages within the osu! 
ecosystem. The format specification follows standard ZIP 
archive structure while maintaining specific organizational 
patterns required for game functionality.  

 
Fig. 1. OSZ File Structure 

The internal structure follows as illustrated in Fig. 1: audio 
files (.mp3/.ogg/.wav) serve as the primary content, 
background images (.jpg/.png) provide visual elements for the 
background image, beatmap configuration files (.osu) contain 
timing and gameplay data, and optional components include 

custom hitsounds, storyboard files (.osb), and skin elements. 
This standardized organization creates multiple vectors for 
steganographic implementation while maintaining 
compatibility with osu! client expectations. 

B. ZIP Archive Structure and Steganography Analysis 

The underlying ZIP format provides several hiding 

opportunities within its technical specification as demonstrated 

in Fig. 2. ZIP archives contain local file headers (signature 

0x04034b50), central directory headers (signature 

0x02014b50), and end of central directory records (signature 

0x06054b50). Each component offers potential concealment 

locations including extra field sections, comment fields, and 

gap spaces between file sections. 

 

Fig. 2. ZIP File Structure 

The ZIP central directory structure contains fields including 

ZIPSignature, FileNameStringLength, ExtraDataLength, 

FileCommentLength, and RelativeOffsetOfLocalHeader. Since 

the checksum check only ensures integrity of the compressed 

data, but not the header we can easily modify any member of 

the central directory entry structure. The first steganographic 

technique involves filename manipulation where by changing 

the first character of the name (the byte 0x6D which is the 

letter 'm') to 0x00, we effectively hide this file from being 

listed by almost all programs that work with the ZIP file 

format. 

 

This technique exploits the fact that ZIP stores file names at 

two locations, once at the central directory entry and once at 

the local directory entry - and since only one of the two is 

modified, the other one can be used to revert the file to original 

state. The extra data fields described in the PKWARE ZIP file 

format specification were introduced because of the need to 

store extra information about the file such as NTFS data 

streams, encryption information and other data utilized by 

applications that process this format. For data hiding, you need 

only expand the extra field of one file to consume one or more 

of the files that follow it in the archive header. 

 

The most sophisticated technique involves manipulation of the 

End of Central Directory (EOCD) record structure. To hide 

files, you simply change the LocationOfCentralDir pointer to 

point to the first file you want to be visible in the archive. This 
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procedure hides all files located prior to the file to which the 

modified LocationOfCentralDir points. The internal data 

structure of ZIP archives is similar to that the structure the file 

system uses to store data on drives. Files form an array of local 

directory entry structures followed by compressed data 

assigned to that local directory entry. Since the central 

directory entry end structure contains the pointer to the first 

central directory entry, it can be moved in any direction. By 

moving it up in a file we create space for data to be injected, as 

shown in Fig. 3. 

 
Fig. 3. Injected ZIP 

One side effect of injecting data this way is that once new files 

are added to such an archive with an archiver application, 

injected data is automatically stripped during the unarchiving 

process. This creates natural protection mechanisms where 

hidden data will be stripped by the antivirus itself, if the file is 

scanned for malware, which is useful if the file ends up in the 

wrong hands, because the hidden data will self destruct. 

C. Hiding Data in other Files 

Beyond ZIP archive structure manipulation, OSZ files contain 

multiple multimedia components that provide additional 

steganographic opportunities. Each file type within the archive 

offers unique hiding locations that can be exploited to create 

comprehensive data concealment systems. 

 

1) Audio File Steganography 

Audio files within OSZ archives provide substantial 

opportunities for data concealment through LSB (Least 

Significant Bit) steganography techniques. In digital audio 

representation, each sample is stored as a multi-bit value 

where the LSB carries minimal significance in the overall 

sound quality. Modifying the LSB changes the amplitude by 

only one unit out of the total range, creating variations 

imperceptible to human hearing. 

 

For WAV files commonly found in beatmaps, the 

implementation directly manipulates uncompressed audio 

samples. A typical 16-bit WAV file can theoretically hide one 

bit of data per audio sample, providing substantial capacity - 

for example, a 256×256 pixel grayscale image can hide 8KB 

of data, while audio files with thousands of samples per 

second offer even greater capacity. The steganographic 

process involves reading the audio samples, extracting the 

LSB from each sample, replacing it with secret data bits, and 

reconstructing the audio file. 

 

For compressed formats like MP3 and OGG, the approach 

operates on the raw compressed byte stream rather than 

decoded audio samples. This method bypasses potential 

quality degradation from decompression-recompression cycles 

while maintaining format compatibility. To increase hiding 

capacity, multiple LSBs can be utilized (2-bit, 3-bit LSB), 

though this creates a trade-off where larger capacity results in 

decreased audio quality. 

 

2) Image Steganography in Background Files 

Background images in OSZ files leverage LSB steganography 

in the spatial domain, directly modifying pixel intensity values. 

For 24-bit color images, each pixel contains RGB components 

(Red-Green-Blue), with each component represented by 8 bits. 

The steganographic process typically targets the blue channel 

since human visual perception is least sensitive to blue color 

variations. 

 

The fundamental principle relies on the fact that modifying the 

LSB changes pixel values by only ±1 from their original 

intensity, creating differences imperceptible to human vision. 

For instance, changing a pixel value from 130 to 131 

maintains virtually identical visual appearance while 

embedding one bit of secret data. 

 

The implementation requires format considerations for 

optimal results. JPEG images pose challenges due to lossy 

compression that can destroy embedded LSB data, 

necessitating conversion to lossless formats like PNG for 

reliable steganographic applications. Capacity calculations for 

image steganography depend on resolution and color depth - a 

256×256 pixel color image (24-bit) can accommodate 

approximately 24KB of hidden data when utilizing one LSB 

per color component. 

 

The embedding process can follow sequential patterns where 

data bits are embedded in consecutive pixels, or randomized 

approaches using pseudo-random number generators (PRNG) 

with seed-based keys for enhanced security. Additional 

security layers can include pre-encryption of secret data using 

XOR operations with randomly generated key bits before LSB 

embedding. 

 

3) Beatmap Configuration File Manipulation 

The .osu configuration files support comment lines using the 

'//' prefix, which are ignored by the game client during parsing. 

Hidden data can be encoded and embedded within these 

comment sections, appearing as documentation or 

configuration notes. Since these files already contain various 
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technical comments explaining timing points and mapping 

decisions, additional commented lines integrate seamlessly 

with the existing file structure. 

Each of these techniques leverages the natural characteristics 

of their respective file formats. The distributed nature of 

hiding locations across multiple file types within the same 

archive creates a robust system that can accommodate varying 

data sizes and requirements. 

 

III. IMPLEMENTATION 

This phase involves developing practical steganographic 
tools and algorithms specifically designed for OSZ beatmap 
files. This section details the technical approach and 
experimental setup used to validate the proposed 
steganographic techniques. 

The implementation utilizes Python-based development 
framework with specialized libraries for multimedia processing 
and archive manipulation. Key components include zipfile 
library for ZIP archive handling, wave and mutagen libraries 
for audio processing, PIL for image manipulation, and custom 
parsing modules for .osu configuration files. 

A. Python Code Structure 

The steganographic implementation follows a modular 

architecture designed for flexibility and extensibility. The core 

OSZSteganography class provides a unified interface for 

embedding and extracting data across multiple hiding 

locations within OSZ archives. 

class OSZSteganography: 

    def __init__(self): 

        self.supported_audio = ['.mp3', '.ogg', '.wav'] 

        self.supported_images = ['.jpg', '.jpeg', '.png'] 

    def embed_data(self, osz_path, secret_data, 
output_path=None, methods=['zip', 'audio', 'image', 
'config'], audio_file=None) 

    def extract_data(self, osz_path, methods=['zip', 
'audio', 'image', 'config']) 

The implementation employs a cascading approach where 

multiple embedding methods are attempted sequentially until 

one succeeds. This redundancy ensures data can be hidden 

even when specific file types are unavailable or unsuitable for 

the target data size. The system prioritizes methods based on 

capacity and reliability: configuration comments for small data, 

ZIP structure manipulation for medium payloads, and 

multimedia LSB techniques for larger datasets. 

 

B. ZIP Archive Steganography Implementation 

The ZIP archive steganography implementation exploits the 

structural characteristics of the ZIP format used by OSZ files. 

The technique operates on multiple levels within the archive 

structure, from simple comment field manipulation to 

sophisticated central directory modifications. 

The primary implementation approach utilizes the ZIP 

comment field mechanism, which allows arbitrary data storage 

within the archive structure without affecting file integrity or 

functionality. The system encodes secret data using Base64 

encoding to ensure compatibility with ZIP format 

requirements and prevent binary data corruption during 

archive operations. 

def _embed_zip_header(self, temp_dir, data): 

    """Embed data in ZIP header using comment field""" 

    comment_file = os.path.join(temp_dir, '.stego_comment') 

    encoded_data = base64.b64encode(data).decode('ascii') 

    with open(comment_file, 'w') as f: 

        f.write(encoded_data) 

The embedding process creates a hidden marker file within the 

archive structure that contains the Base64-encoded payload. 

This approach leverages the fact that most ZIP processing 

tools ignore files with specific naming patterns, particularly 

those beginning with dots or containing steganographic 

markers. The hidden file integrates seamlessly with the OSZ 

structure since beatmap archives commonly contain various 

metadata and configuration files. 

For extraction, the system performs reverse operations by 

locating the marker file and decoding the embedded payload: 

def _extract_zip_header(self, osz_path): 

    """Extract data from ZIP header""" 

    with tempfile.TemporaryDirectory() as temp_dir: 

        self._extract_osz(osz_path, temp_dir) 

        comment_file = os.path.join(temp_dir, 
'.stego_comment') 

        if os.path.exists(comment_file): 

            with open(comment_file, 'r') as f: 

                encoded_data = f.read() 

                return base64.b64decode(encoded_data) 

    return None 
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The ZIP steganography method provides moderate capacity 

limited primarily by Base64 encoding overhead, which 

increases data. However, this technique offers excellent 

compatibility with existing osu! infrastructure and maintains 

archive functionality across different platforms and ZIP 

processing tools. 

 

C. Audio LSB Steganography Implementation 

The audio steganography implementation targets the 

multimedia components within OSZ archives, specifically 

exploiting the least significant bit (LSB) substitution technique 

across multiple audio formats. The system supports WAV, 

MP3, and OGG files, each requiring specialized handling due 

to format-specific characteristics and compression algorithms. 

The implementation employs a sophisticated capacity analysis 

system that evaluates available audio files and selects optimal 

candidates based on file size, format characteristics, and 

estimated hiding capacity: 

def _embed_audio_lsb(self, temp_dir, data, 
target_audio=None): 

    """Embed data in audio files using LSB""" 

    audio_files = self._find_files_by_extension(temp_dir, 
self.supported_audio) 

     

    if target_audio: 

        selected_file = 
self._locate_target_audio(audio_files, target_audio) 

    else: 

        selected_file = max(audio_files, key=lambda f: 
os.path.getsize(f)) 

         

    if selected_file.lower().endswith('.wav'): 

        return self._embed_wav_lsb(selected_file, data) 

    elif selected_file.lower().endswith(('.mp3', '.ogg')): 

        return 
self._embed_compressed_audio_lsb(selected_file, data) 

For WAV files, the implementation directly manipulates 

uncompressed audio samples using precise bit manipulation. 

The system reads the WAV file structure, extracts audio 

sample data, and systematically replaces the least significant 

bits with hidden data bits. A length header is prepended to the 

payload to enable accurate extraction: 

def _embed_wav_lsb(self, wav_file, data): 

    """Embed data in WAV file using LSB""" 

    with wave.open(wav_file, 'rb') as wav: 

        frames = wav.readframes(wav.getnframes()) 

        params = wav.getparams() 

         

    # Convert to sample array based on bit depth 

    if params.sampwidth == 2: 

        audio_data = list(struct.unpack('<' + 'h' * 
(len(frames) // 2), frames)) 

         

    # Embed length header followed by payload 

    data_with_length = struct.pack('<I', len(data)) + data 

     

    # Systematic LSB replacement 

    bit_index = 0 

    for byte in data_with_length: 

        for bit in range(8): 

            bit_value = (byte >> bit) & 1 

            audio_data[bit_index] = (audio_data[bit_index] 
& 0xFFFE) | bit_value 

            bit_index += 1 

For compressed audio formats (MP3/OGG), the 

implementation operates on the raw byte stream rather than 

decoded audio samples. This approach bypasses compression 

artifacts while maintaining format compatibility. The system 

skips format headers to avoid corruption and embeds data in 

the compressed audio payload: 

def _embed_compressed_audio_lsb(self, audio_file, data): 

    """Embed data in MP3/OGG files using LSB on raw 
bytes""" 

    with open(audio_file, 'rb') as f: 

        audio_bytes = bytearray(f.read()) 

         

    # Skip format headers to preserve compatibility 

    header_skip = 1024 

    data_with_length = struct.pack('<I', len(data)) + data 
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    # Embed in raw byte LSBs 

    bit_index = 0 

    for byte_val in data_with_length: 

        for bit_pos in range(8): 

            bit_value = (byte_val >> bit_pos) & 1 

            audio_bytes[header_skip + bit_index] = 
(audio_bytes[header_skip + bit_index] & 0xFE) | bit_value 

            bit_index += 1 

The audio steganography method provides substantial hiding 

capacity, particularly for high-quality audio files common in 

rhythm game beatmaps. WAV files offer the highest reliability 

due to their uncompressed nature, while compressed formats 

provide larger capacity but may exhibit minor quality 

degradation in extreme cases. The implementation includes 

comprehensive error handling and capacity validation to 

ensure successful embedding across various audio 

configurations. 

D. Image LSB Steganography Implementation 

The image steganography implementation addresses format 

compatibility challenges inherent in beatmap background 

images. Since OSZ archives commonly contain JPEG 

background images that utilize lossy compression, the system 

implements automatic format conversion to ensure LSB data 

preservation. 

The implementation begins with format detection and 

preprocessing to handle compression incompatibilities: 

def _embed_image_lsb(self, temp_dir, data): 

    image_files = self._find_files_by_extension(temp_dir, 
self.supported_images) 

     

    if image_file.lower().endswith(('.jpg', '.jpeg')): 

        print("WARNING: JPEG format detected!") 

        print("JPEG compression will destroy LSB data. 
Converting to PNG...") 

         

        png_file = image_file.rsplit('.', 1)[0] + '.png' 

        img = Image.open(image_file) 

        img.save(png_file, 'PNG') 

        os.remove(image_file) 

        image_file = png_file 

This preprocessing step prevents compression artifacts from 

destroying embedded data while maintaining visual fidelity of 

the background image within the gaming environment. The 

system specifically targets the blue color channel for data 

embedding, leveraging human visual perception 

characteristics where blue channel modifications are least 

detectable. 

The embedding process employs systematic bit manipulation 

across pixel data with integrated capacity validation: 

img = Image.open(image_file).convert('RGB') 

pixels = list(img.getdata()) 

data_with_length = struct.pack('<I', len(data)) + data 

# Capacity validation 

if len(data_with_length) * 8 > len(pixels): 

    print(f"Not enough capacity. Need 
{len(data_with_length) * 8}, have {len(pixels)}") 

    return False 

 

# LSB embedding in blue channel 

for pixel_idx, pixel in enumerate(pixels): 

    r, g, b = pixel 

    if bit_index < len(data_with_length) * 8: 

        byte_index = bit_index // 8 

        bit_position = bit_index % 8 

        bit_value = (data_with_length[byte_index] >> 
bit_position) & 1 

        b = (b & 0xFE) | bit_value 

    modified_pixels.append((r, g, b)) 

The implementation incorporates immediate verification 

mechanisms to ensure embedding success. After modification, 

the system performs extraction validation on the modified 

image to confirm data integrity before finalizing the process. 

This verification step detects potential embedding failures 

early and prevents corrupted steganographic containers from 

being created. 

E. Configuration File Comment Injection 

The configuration file steganography exploits the comment 

structure within .osu beatmap files, which contain timing data, 
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difficulty parameters, and mapping metadata. These files 

support C-style comments using the '//' prefix, creating natural 

hiding locations that integrate seamlessly with existing 

documentation patterns. 

The implementation utilizes Base64 encoding to ensure 

comment compatibility and implements a chunked storage 

approach for reliability: 

def _embed_config_comments(self, temp_dir, data): 

    osu_files = self._find_files_by_extension(temp_dir, 
['.osu']) 

    osu_file = osu_files[0] 

     

    encoded_data = base64.b64encode(data).decode('ascii') 

    chunk_size = 60  # Smaller chunks for reliability 

    chunks = [encoded_data[i:i+chunk_size] for i in range(0, 
len(encoded_data), chunk_size)] 

     

    comment_lines = [] 

    comment_lines.append("// STEGO_START\n") 

    for i, chunk in enumerate(chunks): 

        comment_lines.append(f"// STEGO_DATA_{i:03d}: 
{chunk}\n") 

    comment_lines.append("// STEGO_END\n") 

The system employs structured markers and indexed data 

chunks to enable reliable reconstruction during extraction. The 

chunked approach prevents line length limitations and parsing 

errors while maintaining comment format compliance. Data 

chunks are sequentially numbered and encapsulated between 

clear start and end markers. 

For extraction, the implementation performs systematic 

parsing to locate steganographic markers and reconstruct the 

original payload: 

def _extract_config_comments(self, temp_dir): 

    stego_lines = {} 

    in_stego_section = False 

     

    for line in lines: 

        line = line.strip() 

        if line == '// STEGO_START': 

            in_stego_section = True 

        elif line == '// STEGO_END': 

            in_stego_section = False 

            break 

        elif in_stego_section and line.startswith('// 
STEGO_DATA_'): 

            parts = line.split(': ', 1) 

            if len(parts) == 2: 

                index = int(parts[0].split('_')[-1]) 

                stego_lines[index] = parts[1] 

    # Reassemble data in correct order 

    encoded_data = ''.join(stego_lines[i] for i in 
sorted(stego_lines.keys())) 

    return base64.b64decode(encoded_data) 

This method provides excellent stealth characteristics since 

additional comments in beatmap files appear as standard 

documentation or developer notes. The technique offers 

moderate capacity limited primarily by reasonable comment 

lengths and maintains full compatibility with osu! client 

parsing requirements. 

F. Uploading Beatmap with Hidden Files 

The final phase involves integrating steganographic beatmaps 

into the official osu! distribution ecosystem through the 

standard beatmap submission process. This phase requires 

manual interaction with the osu! client editor and submission 

system, as the steganographic implementation operates 

independently of the game's built-in upload mechanisms. 

 

The upload process begins within the osu! editor environment, 

where the modified beatmap folder containing steganographic 

content must be properly configured for submission. The 

editor automatically scans the beatmap directory structure, 

reading all component files including the modified audio, 

image, and configuration files that contain embedded data. 

The system validates file integrity, timing accuracy, and 

gameplay functionality before enabling submission options. 

 

Once successfully submitted, the beatmap becomes available 

through the official osu! repository where it integrates with the 

standard download and distribution infrastructure. The 

steganographic content becomes accessible to authorized 

recipients who possess appropriate extraction tools and 

knowledge of the embedded data locations. This distribution 

method leverages the legitimate high-volume traffic of the 

gaming platform to provide natural cover for covert 

communication channels. 
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IV. EXPERIMENTS AND RESULTS 

This section presents comprehensive testing results for the 

steganographic implementation across multiple hiding 

methods within OSZ beatmap files. Each technique was 

evaluated under various distribution scenarios to assess 

practical viability, operational constraints, and resistance to 

automated processing systems. The experimental framework 

encompasses local testing, peer-to-peer distribution, official 

submission pipelines, game functionality verification, and data 

integrity analysis. 

The testing protocol employed a systematic approach to 

evaluate each steganographic method across multiple 

deployment scenarios. Test data included both text messages 

and binary files of varying sizes to assess capacity limitations 

and format compatibility. Each method was subjected to three 

distribution pathways: local extraction verification, direct 

peer-to-peer file transfer, and official osu! submission through 

the beatmap ranking system. Game functionality testing 

verified that steganographic modifications did not compromise 

beatmap playability or introduce detectable artifacts. 

A. Comprehensive Steganographic Testing Results 

Meth

od 

Data 

Type 

Local 

Testing 

Peer-to-Peer 

Distribution 

Official osu! 

Submission 
Data Integrity 

Game 

Function 

OSZ 
Text 

Data 
Successful Successful Failed Perfect Playable 

 File 

Data 
Successful Successful Failed Perfect Playable 

Image 

LSB 

Text 

Data 
Successful Successful Failed Perfect 

Playable, 

Missing Image 

 File 

Data 
Successful Successful Failed Perfect 

Playable, 

Missing 

Background 

Audio 

LSB 

Text 

Data 
Successful Successful Successful Perfect Perfect 

 File 

Data 
Successful Successful Successful Perfect Perfect 

Confi

gurati

on 

Text 

Only 
Successful Successful Failed Perfect Perfect 

B. Visual Evidence of Testing Results 

The following figures demonstrate the practical outcomes of 

steganographic testing across different data types and 

distribution methods. 

 

Fig. 4. Text Data Steganography Results Comparison Left: Original, Right 

Extracted 

 

Fig. 5.  File Data Steganography Results Comparison Left: Original, Right 

Extracted 

C. Detailed Analysis 

1) ZIP Archive Steganography Performance 

ZIP archive steganography demonstrated excellent 

performance in controlled environments but failed completely 

when subjected to official submission processing. The failure 

mechanism appears to be server-side OSZ reconstruction, 

where the osu! submission system extracts, validates, and 

repackages beatmap contents, effectively stripping any hidden 

metadata files or comment fields. This behavior suggests that 

the osu! infrastructure implements security measures that 

inadvertently defeat ZIP-based steganographic techniques. 

2) Image LSB Steganography Analysis 

Image steganography showed promising results in peer-to-

peer scenarios but encountered significant obstacles during 

official submission. The primary failure mode stems from osu! 

server-side image processing constraints, specifically the 

2.5MB file size limit for background images and automatic 

format optimization. The steganographic implementation 

converts JPEG images to PNG format to prevent lossy 

compression from destroying embedded data, but this 

conversion often results in files exceeding server size limits. 
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As seen in Fig. 6, the format conversion process can cause 

background images to be rejected, compromising the visual 

integrity of the beatmap. This creates a trade-off between 

steganographic capability and aesthetic preservation that limits 

practical development scenarios. 

 

 
Fig. 6. Before and After File Insertion 

3) Audio LSB Steganography Superiority 

Audio LSB steganography emerged as the most robust and 

versatile method across all testing scenarios. This technique 

successfully survived the complete official submission 

pipeline while maintaining both data integrity and beatmap 

functionality. The success appears attributable to several 

factors: audio files undergo minimal server-side processing, 

LSB modifications in audio samples are below human 

auditory perception thresholds, and the osu! client treats 

modified audio files as functionally equivalent to originals. 

The method demonstrated exceptional capacity, successfully 

embedding multi-megabyte files within typical beatmap audio 

tracks without detectable quality degradation. The resistance 

to automated detection systems and compatibility with official 

distribution channels makes this approach particularly suitable 

for operational deployment. 

4) Configuration File Steganography Limitations 

Configuration file steganography succeeded in direct 

distribution scenarios but failed official submission due to 

comment sanitization processes. The osu! submission system 

appears to parse and reconstruct .osu configuration files, 

removing or standardizing comment sections that contain 

embedded data. While this method offers excellent stealth 

characteristics for peer-to-peer distribution, its vulnerability to 

automated processing limits operational utility. 

D. Capacity and Performance Metrics 

Capacity analysis reveals substantial differences between 

methods. Audio steganography offers the highest payload 

capacity due to the large size of typical beatmap audio files 

and the availability of one LSB per audio sample. Image 

steganography provides moderate capacity limited by 

resolution and color depth, while configuration file methods 

are restricted to text-only payloads. ZIP archive methods 

theoretically offer unlimited capacity but are defeated by 

processing pipeline constraints. 

V. CONCLUSION 

This research successfully addresses the identified gap in 
steganographic literature regarding gaming file formats, 
demonstrating that osu! OSZ beatmap files can serve as 
effective steganographic carriers when appropriate techniques 
are employed. Audio LSB steganography specifically emerges 
as a robust solution that balances capacity, reliability, and 
operational security requirements. 

 

While the technique presents certain limitations and 
vulnerabilities, its demonstrated success in bypassing server-
side processing constraints and maintaining compatibility with 
official distribution channels establishes it as a viable method 
for covert data transmission through gaming networks. The 
research provides a foundation for further exploration of 
gaming-based steganographic applications and highlights the 
evolving landscape of digital covert communication channels. 

 

The experimental validation confirms that gaming file formats 
represent a significant and previously underexplored domain 
for steganographic research, offering unique advantages over 
conventional multimedia carriers while presenting novel 
challenges that require specialized technical approaches. 

 

REPOSITORY LINK AT GITHUB 

https://github.com/Mipol2/osz-stego 
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